Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
2.
AJR Am J Roentgenol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506540

RESUMO

Background: The energy demand of interventional imaging systems has historically been estimated using manufacturer-provided specifications rather than directly measured. Objective: To investigate the energy consumption of interventional imaging systems and estimate potential savings in such systems' carbon emissions and electricity costs through hypothetical operational adjustments. Methods: An interventional radiology suite, neurointerventional suite, radiology fluoroscopy unit, two cardiology laboratories, and two urology fluoroscopy units were equipped with power sensors. Power measurements logs were extracted for a single 4-week period for each radiology and cardiology system (all between June 1, 2022 and November 28, 2022) and for the 2-week period from July 31, 2023 to August 13, 2023 for each urology system. Power statuses, procedure timestamps, and fluoroscopy times were extracted from various sources. System activity was divided into off, idle (no patient in room), active (patient in room for procedure), and net-imaging (active fluoroscopic image acquisition) states. Projected annual energy consumption was calculated. Potential annual savings in carbon emissions and electricity costs through hypothetical operational adjustments were estimated using published values for Switzerland. Results: Across the seven systems, the mean power draw was 0.3-1.1 kW, 0.7-7.4 kW, 0.9-7.6 kW, and 1.9-12.5 kW in the off, idle, active, and net-imaging states, respectively. Across systems, the off state, in comparison with the idle state, exhibited a decrease in mean power draw of 0.2-6.9 kW (relative decrease, 22.2-93.2%). The systems had a combined projected annual energy consumption of 115,684 kWh (range, 3646-26,576 kWh per system). The systems' combined projected energy consumption occurring outside of the net-imaging state accounted for 93.0% (107,978/115,684 kWh) of projected total energy consumption (range, 89.2-99.4% per system). A hypothetical operational adjustment whereby all systems would be switched from the idle to off state overnight and on weekends (vs operated in idle mode 24/7) would yield potential annual savings in energy consumption of 144,640 kWh, carbon emissions of 18.6 MtCO2eq, and electricity costs of $37,896. Conclusion: Interventional imaging systems are energy intensive, with high consumption outside of image acquisition periods. Clinical Impact: Strategic operational adjustments (e.g., powering down idle systems) can substantially decrease interventional imaging systems' carbon emissions and electricity costs.

3.
Skeletal Radiol ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441617

RESUMO

Magnetic resonance imaging (MRI) is crucial for accurately diagnosing a wide spectrum of musculoskeletal conditions due to its superior soft tissue contrast resolution. However, the long acquisition times of traditional two-dimensional (2D) and three-dimensional (3D) fast and turbo spin-echo (TSE) pulse sequences can limit patient access and comfort. Recent technical advancements have introduced acceleration techniques that significantly reduce MRI times for musculoskeletal examinations. Key acceleration methods include parallel imaging (PI), simultaneous multi-slice acquisition (SMS), and compressed sensing (CS), enabling up to eightfold faster scans while maintaining image quality, resolution, and safety standards. These innovations now allow for 3- to 6-fold accelerated clinical musculoskeletal MRI exams, reducing scan times to 4 to 6 min for joints and spine imaging. Evolving deep learning-based image reconstruction promises even faster scans without compromising quality. Current research indicates that combining acceleration techniques, deep learning image reconstruction, and superresolution algorithms will eventually facilitate tenfold accelerated musculoskeletal MRI in routine clinical practice. Such rapid MRI protocols can drastically reduce scan times by 80-90% compared to conventional methods. Implementing these rapid imaging protocols does impact workflow, indirect costs, and workload for MRI technologists and radiologists, which requires careful management. However, the shift from conventional to accelerated, deep learning-based MRI enhances the value of musculoskeletal MRI by improving patient access and comfort and promoting sustainable imaging practices. This article offers a comprehensive overview of the technical aspects, benefits, and challenges of modern accelerated musculoskeletal MRI, guiding radiologists and researchers in this evolving field.

4.
Radiology ; 310(2): e232030, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38411520

RESUMO

According to the World Health Organization, climate change is the single biggest health threat facing humanity. The global health care system, including medical imaging, must manage the health effects of climate change while at the same time addressing the large amount of greenhouse gas (GHG) emissions generated in the delivery of care. Data centers and computational efforts are increasingly large contributors to GHG emissions in radiology. This is due to the explosive increase in big data and artificial intelligence (AI) applications that have resulted in large energy requirements for developing and deploying AI models. However, AI also has the potential to improve environmental sustainability in medical imaging. For example, use of AI can shorten MRI scan times with accelerated acquisition times, improve the scheduling efficiency of scanners, and optimize the use of decision-support tools to reduce low-value imaging. The purpose of this Radiology in Focus article is to discuss this duality at the intersection of environmental sustainability and AI in radiology. Further discussed are strategies and opportunities to decrease AI-related emissions and to leverage AI to improve sustainability in radiology, with a focus on health equity. Co-benefits of these strategies are explored, including lower cost and improved patient outcomes. Finally, knowledge gaps and areas for future research are highlighted.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Radiografia , Big Data , Mudança Climática
5.
Eur J Radiol ; 170: 111269, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142572

RESUMO

OBJECTIVES: Resource planning is a crucial component in hospitals, particularly in radiology departments. Since weather conditions are often described to correlate with emergency room visits, we aimed to forecast the amount of polytrauma-CTs using weather information. DESIGN: All polytrauma-CTs between 01/01/2011 and 12/31/2022 (n = 6638) were retrieved from the radiology information system. Local weather data was downloaded from meteoblue.com. The data was normalized and smoothened. Daily polytrauma-CT occurrence was stratified into below median and above median number of daily polytrauma-CTs. Logistic regression and machine learning algorithms (neural network, random forest classifier, support vector machine, gradient boosting classifier) were employed as prediction models. Data from 2012 to 2020 was used for training, data from 2021 to 2022 for validation. RESULTS: More polytrauma-CTs were acquired in summer compared with winter months, demonstrating a seasonal change (median: 2.35; IQR 1.60-3.22 vs. 2.08; IQR 1.36-3.03; p <.001). Temperature (rs = 0.45), sunshine duration (rs = 0.38) and ultraviolet light amount (rs = 0.37) correlated positively, wind velocity (rs = -0.57) and cloudiness (rs = -0.28) correlated negatively with polytrauma-CT occurrence (all p <.001). The logistic regression model for identification of days with above median number of polytrauma-CTs achieved an accuracy of 87 % on training data from 2011 to 2020. When forecasting the years 2021-2022 an accuracy of 65 % was achieved. A neural network and a support vector machine both achieved a validation accuracy of 72 %, whereas all classifiers regarded wind velocity and ultraviolet light amount as the most important parameters. CONCLUSION: It is possible to forecast above or below median daily number of polytrauma-CTs using weather data. CLINCICAL RELEVANCE STATEMENT: Prediction of polytrauma-CT examination volumes may be used to improve resource planning.


Assuntos
Traumatismo Múltiplo , Radiologia , Humanos , Estudos Retrospectivos , Tempo (Meteorologia) , Tomografia Computadorizada por Raios X , Traumatismo Múltiplo/diagnóstico por imagem , Traumatismo Múltiplo/epidemiologia
6.
Eur Radiol ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982834

RESUMO

OBJECTIVES: To automatically label chest radiographs and chest CTs regarding the detection of pulmonary infection in the report text, to calculate the number needed to image (NNI) and to investigate if these labels correlate with regional epidemiological infection data. MATERIALS AND METHODS: All chest imaging reports performed in the emergency room between 01/2012 and 06/2022 were included (64,046 radiographs; 27,705 CTs). Using a regular expression-based text search algorithm, reports were labeled positive/negative for pulmonary infection if described. Data for regional weekly influenza-like illness (ILI) consultations (10/2013-3/2022), COVID-19 cases, and hospitalization (2/2020-6/2022) were matched with report labels based on calendar date. Positive rate for pulmonary infection detection, NNI, and the correlation with influenza/COVID-19 data were calculated. RESULTS: Between 1/2012 and 2/2020, a 10.8-16.8% per year positive rate for detecting pulmonary infections on chest radiographs was found (NNI 6.0-9.3). A clear and significant seasonal change in mean monthly detection counts (102.3 winter; 61.5 summer; p < .001) correlated moderately with regional ILI consultations (weekly data r = 0.45; p < .001). For 2020-2021, monthly pulmonary infection counts detected by chest CT increased to 64-234 (23.0-26.7% per year positive rate, NNI 3.7-4.3) compared with 14-94 (22.4-26.7% positive rate, NNI 3.7-4.4) for 2012-2019. Regional COVID-19 epidemic waves correlated moderately with the positive pulmonary infection CT curve for 2020-2022 (weekly new cases: r = 0.53; hospitalizations: r = 0.65; p < .001). CONCLUSION: Text mining of radiology reports allows to automatically extract diagnoses. It provides a metric to calculate the number needed to image and to track the trend of diagnoses in real time, i.e., seasonality and epidemic course of pulmonary infections. CLINICAL RELEVANCE: Digitally labeling radiology reports represent previously neglected data and may assist in automated disease tracking, in the assessment of physicians' clinical reasoning for ordering radiology examinations and serve as actionable data for hospital workflow optimization. KEY POINTS: • Radiology reports, commonly not machine readable, can be automatically labeled with the contained diagnoses using a regular-expression based text search algorithm. • Chest radiograph reports positive for pulmonary infection moderately correlated with regional influenza-like illness consultations (weekly data; r = 0.45; p < .001) and chest CT reports with the course of the regional COVID-19 pandemic (new cases: r = 0.53; hospitalizations: r = 0.65; p < 0.001). • Rendering radiology reports into data labels provides a metric for automated disease tracking, the assessment of ordering physicians clinical reasoning and can serve as actionable data for workflow optimization.

7.
J Magn Reson Imaging ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37694980

RESUMO

The environmental impact of magnetic resonance imaging (MRI) has recently come into focus. This includes its enormous demand for electricity compared to other imaging modalities and contamination of water bodies with anthropogenic gadolinium related to contrast administration. Given the pressing threat of climate change, addressing these challenges to improve the environmental sustainability of MRI is imperative. The purpose of this review is to discuss the challenges, opportunities, and the need for action to reduce the environmental impact of MRI and prepare for the effects of climate change. The approaches outlined are categorized as strategies to reduce greenhouse gas (GHG) emissions from MRI during production and use phases, approaches to reduce the environmental impact of MRI including the preservation of finite resources, and development of adaption plans to prepare for the impact of climate change. Co-benefits of these strategies are emphasized including lower GHG emission and reduced cost along with improved heath and patient satisfaction. Although MRI is energy-intensive, there are many steps that can be taken now to improve the environmental sustainability of MRI and prepare for the effects of climate change. On-going research, technical development, and collaboration with industry partners are needed to achieve further reductions in MRI-related GHG emissions and to decrease the reliance on finite resources. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 6.

8.
Eur Urol Focus ; 9(6): 891-893, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758613

RESUMO

It is estimated that the health care sector accounts for 4.0-8.5% of total global CO2 emissions, with medical imaging representing an energy-intensive contributor. We outline the carbon footprint of the imaging modalities most relevant to urology and list practical recommendations that can have a positive impact on sustainability. PATIENT SUMMARY: Energy use for medical imaging scans is a significant contributor to carbon emissions by the health care sector. Steps to improve sustainability can include choosing the least energy-intensive option among the scan types suitable for each patient and condition, and switching off equipment when it is not in use.


Assuntos
Pegada de Carbono , Diagnóstico por Imagem , Humanos
9.
Invest Radiol ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37747455

RESUMO

OBJECTIVES: The aim of this study was to compare the detection rate of and reader confidence in 0.55 T knee magnetic resonance imaging (MRI) findings with 3 T knee MRI in patients with acute trauma and knee pain. MATERIALS AND METHODS: In this prospective study, 0.55 T and 3 T knee MRI of 25 symptomatic patients (11 women; median age, 38 years) with suspected internal derangement of the knee was obtained in 1 setting. On the 0.55 T system, a commercially available deep learning image reconstruction algorithm was used (Deep Resolve Gain and Deep Resolve Sharp; Siemens Healthineers), which was not available on the 3 T system. Two board-certified radiologists reviewed all images independently and graded image quality parameters, noted MRI findings and their respective reporting confidence level for the presence or absence, as well as graded the bone, cartilage, meniscus, ligament, and tendon lesions. Image quality and reader confidence levels were compared ( P < 0.05 = significant), and clinical findings were correlated between 0.55 T and 3 T MRI by calculation of the intraclass correlation coefficient (ICC). RESULTS: Image quality was rated higher at 3 T compared with 0.55 T studies (each P ≤ 0.017). Agreement between 0.55 T and 3 T MRI for the detection and grading of bone marrow edema and fractures, ligament and tendon lesions, high-grade meniscus and cartilage lesions, Baker cysts, and joint effusions was perfect for both readers. Overall identification and grading of cartilage and meniscal lesions showed good agreement between high- and low-field MRI (each ICC > 0.76), with lower agreement for low-grade cartilage (ICC = 0.77) and meniscus lesions (ICC = 0.49). There was no difference in readers' confidence levels for reporting lesions of bone, ligaments, tendons, Baker cysts, and joint effusions between 0.55 T and 3 T (each P > 0.157). Reader reporting confidence was higher for cartilage and meniscal lesions at 3 T (each P < 0.041). CONCLUSIONS: New-generation 0.55 T knee MRI, with deep learning-aided image reconstruction, allows for reliable detection and grading of joint lesions in symptomatic patients, but it showed limited accuracy and reader confidence for low-grade cartilage and meniscal lesions in comparison with 3 T MRI.

10.
Eur Radiol ; 33(11): 7496-7506, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37542652

RESUMO

OBJECTIVES: To investigate how a transition from free text to structured reporting affects reporting language with regard to standardization and distinguishability. METHODS: A total of 747,393 radiology reports dictated between January 2011 and June 2020 were retrospectively analyzed. The body and cardiothoracic imaging divisions introduced a reporting concept using standardized language and structured reporting templates in January 2016. Reports were segmented by a natural language processing algorithm and converted into a 20-dimension document vector. For analysis, dimensionality was reduced to a 2D visualization with t-distributed stochastic neighbor embedding and matched with metadata. Linguistic standardization was assessed by comparing distinct report types' vector spreads (e.g., run-off MR angiography) between reporting standards. Changes in report type distinguishability (e.g., CT abdomen/pelvis vs. MR abdomen) were measured by comparing the distance between their centroids. RESULTS: Structured reports showed lower document vector spread (thus higher linguistic similarity) compared with free-text reports overall (21.9 [free-text] vs. 15.9 [structured]; - 27.4%; p < 0.001) and for most report types, e.g., run-off MR angiography (15.2 vs. 1.8; - 88.2%; p < 0.001) or double-rule-out CT (26.8 vs. 10.0; - 62.7%; p < 0.001). No changes were observed for reports continued to be written in free text, e.g., CT head reports (33.2 vs. 33.1; - 0.3%; p = 1). Distances between the report types' centroids increased with structured reporting (thus better linguistic distinguishability) overall (27.3 vs. 54.4; + 99.3 ± 98.4%) and for specific report types, e.g., CT abdomen/pelvis vs. MR abdomen (13.7 vs. 37.2; + 171.5%). CONCLUSION: Structured reporting and the use of factual language yield more homogenous and standardized radiology reports on a linguistic level, tailored to specific reporting scenarios and imaging studies. CLINICAL RELEVANCE: Information transmission to referring physicians, as well as automated report assessment and content extraction in big data analyses, may benefit from standardized reporting, due to consistent report organization and terminology used for pathologies and normal findings. KEY POINTS: • Natural language processing and t-distributed stochastic neighbor embedding can transform radiology reports into numeric vectors, allowing the quantification of their linguistic standardization. • Structured reporting substantially increases reports' linguistic standardization (mean: - 27.4% in vector spread) and distinguishability (mean: + 99.3 ± 98.4% increase in vector distance) compared with free-text reports. • Higher standardization and homogeneity outline potential benefits of structured reporting for information transmission and big data analyses.


Assuntos
Processamento de Linguagem Natural , Radiologia , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Linguística
11.
Quant Imaging Med Surg ; 13(7): 4284-4294, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37456296

RESUMO

Background: Diffuse parenchymal liver diseases are contributing substantially to global morbidity and represent major causes of deaths worldwide. The aim of our study is to assess whether established hepatic fat and iron quantitation and relaxometry-based quantification of hepatocyte-specific contrast material as surrogate for liver function estimation allows to evaluate liver fibrosis. Methods: Retrospective consecutive study. Seventy-two healthy patients (mean age: 53 years) without known liver disease, 21 patients with temporary elevated liver enzymes (mean: 65 years) and 109 patients with biopsy proven liver fibrosis or cirrhosis (mean: 61 years), who underwent liver magnetic resonance imaging (MRI) with a hepatocyte-specific contrast agent [gadoxetate disodium, gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA), 0.25 mmol/mL Primovist, Bayer AG, Leverkusen, Germany] at 1.5 T (n=133) and at 3 T (n=69), were included. Fibrosis was classified using the histopathological meta-analysis of histological data in viral hepatitis (METAVIR) and the clinical Child-Pugh scores. Gd-concentration were quantified using T1 map-based calculations. Gd-concentration mapping was performed by using a Look-Locker approach prior to and 912±159 s after intravenous administration of hepatocyte specific contrast agent. Additionally, parenchymal fat fraction, R2*, bilirubin, gender and age were defined as predicting factors. Diagnostic accuracy was calculated in a monoparametric (linear regression, predictor: Gd-concentration) and multiparametric model (predictors: age, bilirubin level, iron overload, liver fat fraction, Gd concentration in the left and right liver lobe). Results: Mean Gd-concentration in the liver parenchyma was significantly higher for healthy patients ([Gd] =0.51 µmol/L) than for those with liver fibrosis or cirrhosis ([Gd] =0.31 µmol/L; P<0.0001) and with acute liver disease ([Gd] =0.28 µmol/L), though there were no significant differences for the latter two groups. There was a significant moderate negative correlation for the mean Gd-concentration and the METAVIR score (ρ=-0.44, P<0.0001) as well as for the Child-Pugh stage (ρ=-0.35, P<0.0001). There was a significant strong correlation between the bilirubin concentration and the Gd-concentration (ρ=-0.61, P<0.0001). The diagnostic accuracy for the discrimination of healthy patients and patients with known fibrosis or cirrhosis was 0.74 (0.71/0.60 sensitivity/specificity) in a monoparametric and 0.76 (0.85/0.61 sensitivity/specificity) in a machine learning based multiparametric model. Conclusions: T1 mapping-based quantification of hepatic Gd-EOB-DTPA concentrations performed in a multiparametric model shows promising diagnostic accuracy for the detection of fibrotic changes. Liver biopsy might be replaced by imaging examinations.

14.
Eur Radiol Exp ; 7(1): 5, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750494

RESUMO

BACKGROUND: To investigate hip implant-related metal artifacts on a 0.55-T system compared with 1.5-T and 3-T systems. METHODS: Total hip arthroplasty made of three different alloys were evaluated in a water phantom at 0.55, 1.5, and 3 T using routine protocols. Visually assessment (VA) was performed by three readers using a Likert scale from 0 (no artifacts) to 6 (extremely severe artifacts). Quantitative assessment (QA) was performed using the coefficient of variation (CoV) and the fraction of voxels within a threshold of the mean signal intensity compared to an automatically defined region of interest (FVwT). Agreement was evaluated using intra/inter-class correlation coefficient (ICC). RESULTS: Interreader agreement of VA was strong-to-moderate (ICC 0.74-0.82). At all field strengths (0.55-T/1.5-T/3-T), artifacts were assigned a lower score for titanium (Ti) alloys (2.44/2.9/2.7) than for stainless steel (Fe-Cr) (4.1/3.9/5.1) and cobalt-chromium (Co-Cr) alloys (4.1/4.1/5.2) (p < 0.001 for both). Artifacts were lower for 0.55-T and 1.5-T than for 3-T systems, for all implants (p ≤ 0.049). A strong VA-to-QA correlation was found (r = 0.81; p < 0.001); CoV was lower for Ti alloys than for Fe-Cr and Co-Cr alloys at all field strengths. The FVwT showed a negative correlation with VA (-0.68 < r < -0.84; p < 0.001). CONCLUSIONS: Artifact intensity was lowest for Ti alloys at 0.55 T. For other alloys, it was similar at 0.55 T and 1.5 T, higher at 3 T. Despite an inferior gradient system and a larger bore width, the 0.55-T system showed the same artifact intensity of the 1.5-T system.


Assuntos
Ligas , Metais , Titânio , Próteses e Implantes , Imageamento por Ressonância Magnética/métodos
15.
Acad Radiol ; 30(11): 2440-2446, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36841743

RESUMO

RATIONALE AND OBJECTIVES: To assess the potential of 0.55T low-field MRI system in lumbar spine imaging with and without the use of additional advanced postprocessing techniques. MATERIALS AND METHODS: The lumbar spine of 14 volunteers (32.9 ± 3.6 years) was imaged both at 0.55T and 1.5T using sequences from clinical routine. On the 0.55T scanner system, additional sequences with simultaneous multi-slice acquisition and artificial intelligence-based postprocessing techniques were acquired. Image quality of all 28 examinations was assessed by three musculoskeletal radiologists with respect to signal/contrast, resolution, and assessability of the spinal canal and neuroforamina using a 5-point Likert scale (1 = non-diagnostic to 5 = perfect quality). Interrater agreement was evaluated with the Intraclass Correlation Coefficient and the Mann-Whitney U test (significance level: p < 0.05). RESULTS: Image quality at 0.55T was rated lower on the 5-point Likert scale compared to 1.5T regarding signal/contrast (mean: 4.16 ± 0.29 vs. 4.54 ± 0.29; p < 0.001), resolution (4.07 ± 0.31 vs. 4.49 ± 0.30; p < 0.001), assessability of the spinal canal (4.28 ± 0.13 vs. 4.73 ± 0.26; p < 0.001) and the neuroforamina (4.14 ± 0.28 vs. 4.70 ± 0.27; p < 0.001). Image quality for the AI-processed sagittal T1 TSE and T2 TSE at 0.55T was also rated slightly lower, but still good to perfect with a concomitant reduction in measurement time. Interrater agreement was good to excellent (range: 0.60-0.91). CONCLUSION: While lumbar spine image quality at 0.55T is perceived inferior to imaging at 1.5T by musculoskeletal radiologists, good overall examination quality was observed with high interrater agreement. Advanced postprocessing techniques may accelerate intrinsically longer acquisition times at 0.55T.

16.
Acad Radiol ; 30(4): 727-736, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35691879

RESUMO

RATIONALE AND OBJECTIVES: To assess the effects of a change from free text reporting to structured reporting on resident reports, the proofreading workload and report turnaround times in the neuroradiology daily routine. MATERIALS AND METHODS: Our neuroradiology section introduced structured reporting templates in July 2019. Reports dictated by residents during dayshifts from January 2019 to March 2020 were retrospectively assessed using quantitative parameters from report comparison. Through automatic analysis of text-string differences between report states (i.e. draft, preliminary and final report), Jaccard similarities and edit distances of reports following read-out sessions as well as after report sign-off were calculated. Furthermore, turnaround times until preliminary and final report availability to clinicians were investigated. Parameters were visualized as trending line graphs and statistically compared between reporting standards. RESULTS: Three thousand five hundred thirty-eight reports were included into analysis. Mean Jaccard similarity of resident drafts and staff-reviewed final reports increased from 0.53 ± 0.37 to 0.79 ± 0.22 after the introduction of structured reporting (p < .001). Both mean overall edits on draft reports by residents following read-out sessions (0.30 ± 0.45 vs. 0.09 ± 0.29; p < .001) and by staff radiologists during report sign-off (0.17 ± 0.28 vs. 0.12 ± 0.23, p < .001) decreased. With structured reporting, mean turnaround time until preliminary report availability to clinicians decreased by 20.7 minutes (246.9 ± 207.0 vs. 226.2 ± 224.9; p < .001). Similarly, final reports were available 35.0 minutes faster on average (558.05 ± 15.1 vs. 523.0 ± 497.3; p = .002). CONCLUSION: Structured reporting is beneficial in the neuroradiology daily routine, as resident drafts require fewer edits in the report review process. This reduction in proofreading workload is likely responsible for lower report turnaround times.


Assuntos
Sistemas de Informação em Radiologia , Carga de Trabalho , Humanos , Estudos Retrospectivos
17.
J Clin Med ; 11(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431182

RESUMO

OBJECTIVES: The objectives of this study were to assess patient comfort when imaged on a newly introduced 0.55T low-field magnetic resonance (MR) scanner system with a wider bore opening compared to a conventional 1.5T MR scanner system. MATERIALS AND METHODS: In this prospective study, fifty patients (mean age: 66.2 ± 17.0 years, 22 females, 28 males) underwent subsequent magnetic resonance imaging (MRI) examinations with matched imaging protocols at 0.55T (MAGNETOM FreeMax, Siemens Healthineers; Erlangen, Germany) and 1.5T (MAGNETOM Avanto Fit, Siemens Healthineers; Erlangen, Germany) on the same day. MRI performed between 05/2021 and 07/2021 was included for analysis. The 0.55T MRI system had a bore opening of 80 cm, while the bore diameter of the 1.5T scanner system was 60 cm. Four patient groups were defined by imaged body regions: (1) cranial or cervical spine MRI using a head/neck coil (n = 27), (2) lumbar or thoracic spine MRI using only the in-table spine coils (n = 10), (3) hip MRI using a large flex coil (n = 8) and (4) upper- or lower-extremity MRI using small flex coils (n = 5). Following the MRI examinations, patients evaluated (1) sense of space, (2) noise level, (3) comfort, (4) coil comfort and (5) overall examination impression on a 5-point Likert-scale (range: 1= "much worse" to 5 = "much better") using a questionnaire. Maximum noise levels of all performed imaging studies were measured in decibels (dB) by a sound level meter placed in the bore center. RESULTS: Sense of space was perceived to be "better" or "much better" by 84% of patients for imaging examinations performed on the 0.55T MRI scanner system (mean score: 4.34 ± 0.75). Additionally, 84% of patients rated noise levels as "better" or "much better" when imaged on the low-field scanner system (mean score: 3.90 ± 0.61). Overall sensation during the imaging examination at 0.55T was rated as "better" or "much better" by 78% of patients (mean score: 3.96 ± 0.70). Quantitative assessment showed significantly reduced maximum noise levels for all 0.55T MRI studies, regardless of body region compared to 1.5T, i.e., brain MRI (83.8 ± 3.6 dB vs. 89.3 ± 5.4 dB; p = 0.04), spine MRI (83.7 ± 3.7 dB vs. 89.4 ± 2.6 dB; p = 0.004) and hip MRI (86.3 ± 5.0 dB vs. 89.1 ± 1.4 dB; p = 0.04). CONCLUSIONS: Patients perceived 0.55T new-generation low-field MRI to be more comfortable than conventional 1.5T MRI, given its larger bore opening and reduced noise levels during image acquisition. Therefore, new concepts regarding bore design and noise level reduction of MR scanner systems may help to reduce patient anxiety and improve well-being when undergoing MR imaging.

18.
Radiologe ; 62(5): 400-404, 2022 May.
Artigo em Alemão | MEDLINE | ID: mdl-35348808

RESUMO

BACKGROUND: Low-field magnetic resonance imaging (MRI) scanners offer an opportunity for cost reduction in the healthcare system. This is due to lower manufacturing costs and reduced construction requirements for installation and operation. OBJECTIVES: To discuss potential cost reductions in acquisition, installation, and maintenance by using new low-field MRI systems. METHODS: We provide an overview of key cost drivers and an evaluation of the potential savings of a recent generation 0.55T low-field MRI compared to conventional 1.5T and 3T MRI systems in routine clinical practice. RESULTS: In terms of purchase price, the savings potential of a 0.55T MRI compared to a 1.5T MRI system is about 40-50%. The 25% lower weight of the system reduces the transportation costs incurred, and the smaller size of the unit allows for installation by a remotely controlled mobile robotic system without opening the exterior façade, if the operating site is at ground level. Together with the lack of need to install a quench pipe, this reduces the total cost of installation by up to 70%. The maintenance cost of a 0.55T MRI is approximately 45% less than that of a 1.5T unit with a comparable service contract. Further cost reductions result from the smaller room size and potentially lower energy consumption for examinations and cooling. CONCLUSION: The use of lower field strength MRI systems offers enormous economic and environmental potential for both hospitals and practice operators, as well as for the healthcare system as a whole.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos
19.
Radiologe ; 62(5): 394-399, 2022 May.
Artigo em Alemão | MEDLINE | ID: mdl-35191997

RESUMO

BACKGROUND: Low-field magnetic resonance imaging (MRI) is experiencing a renaissance due to technical innovations. The new-generation devices offer new applications for imaging and a possible solution to increasing cost pressures in the healthcare system. OBJECTIVES: Effects of field strength on technique, physics, image acquisition, and diagnostic quality of examinations are presented. METHODS: Important basic physical parameters for image acquisition and quality are summarized. Initial clinical experience with a new 0.55 T low-field scanner is presented. RESULTS: Field strengths that are lower than the currently used 1.5 T and 3 T field strengths are characterized by an expected lower signal-to-noise ratio in image acquisition. Whether this is a diagnostic limitation needs to be evaluated in studies, as there are several options to offset this perceived drawback, including increasing measurement time or artificial intelligence (AI) postprocessing techniques. In addition, it is necessary to meticulously investigate whether low-field systems allow diagnostically adequate image quality to be achieved in different body regions and different disease entities. Initial studies in our clinic are promising and show, for example, diagnostic quality without relevant loss of time for examinations of the lumbar spine. Advantages of low-field MRI include reduced susceptibility artifacts when imaging the lungs and in patients with metallic implants. CONCLUSION: Low-field scanners offer a variety of new fields of application with field strength-related advantages. In most other clinical examination fields, at least diagnostic quality can be expected.


Assuntos
Inteligência Artificial , Imageamento por Ressonância Magnética , Artefatos , Humanos , Vértebras Lombares , Imageamento por Ressonância Magnética/métodos , Próteses e Implantes
20.
Cell Rep Med ; 2(11): 100444, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34841291

RESUMO

Although transarterial chemoembolization (TACE) is the most widely used treatment for intermediate-stage, unresectable hepatocellular carcinoma (HCC), it is only effective in a subset of patients. In this study, we combine clinical, radiological, and genomics data in supervised machine-learning models toward the development of a clinically applicable predictive classifier of response to TACE in HCC patients. Our study consists of a discovery cohort of 33 tumors through which we identify predictive biomarkers, which are confirmed in a validation cohort. We find that radiological assessment of tumor area and several transcriptomic signatures, primarily the expression of FAM111B and HPRT1, are most predictive of response to TACE. Logistic regression decision support models consisting of tumor area and RNA-seq gene expression estimates for FAM111B and HPRT1 yield a predictive accuracy of ∼90%. Reverse transcription droplet digital PCR (RT-ddPCR) confirms these genes in combination with tumor area as a predictive classifier for response to TACE.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/genética , Quimioembolização Terapêutica , Artéria Hepática/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/genética , Aprendizado de Máquina Supervisionado , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Feminino , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Hipóxia Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...